Learning to Combine Kernels for Object Categorization

نویسندگان

  • Deyuan Zhang
  • Bingquan Liu
  • Chengjie Sun
  • Xiaolong Wang
چکیده

Kernel classifiers based on the hand-crafted image descriptors proposed in the literature have achieved state-of-the-art results in several dataset and been widely used in image classification systems. Due to the high intra-class and inter-class variety of image categories, no single descriptor could be optimal in all situations. Combining multiple descriptors for a given task is a way to improve the accuracy of the image classification systems. In this paper, we propose a filter framework “Learning to Align the Kernel to its Ideal Form(LAKIF)” to automatically learn the optimal linear combination of multiple kernels. Given the image dataset and the kernels computed on the image descriptors, the optimal kernel weight is learned before the classification. Our method effectively learns the kernel weights by aligning the kernels to their ideal forms, leading to quadratic programming solution. The method takes into account the variation of kernel matrix and imbalanced dataset, which are common in real world image categorization tasks. Experimental results on Graz-01 and Caltech-101 image databases show the effectiveness and robustness of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Categorization with SVM: Kernels for Local Features

In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.

متن کامل

Finding Optimal Combination of Kernels using Genetic Programming

In Computer Vision, problem of identifying or classifying the objects present in an image is called Object Categorization. It is a challenging problem, especially when the images have clutter background, occlusions or different lighting conditions. Many vision features have been proposed which aid object categorization even in such adverse conditions. Past research has shown that, employing mul...

متن کامل

Thesis: Multiple Kernel Learning for Object Categorization

Object Categorization is a challenging problem, especially when the images have clutter background, occlusions or different lighting conditions. In the past, many descriptors have been proposed which aid object categorization even in such adverse conditions. Each descriptor has its own merits and de-merits. Some descriptors are invariant to transformations while the others are more discriminati...

متن کامل

Can Boosting with SVM as Week Learners Help?

Object recognition in images involves identifying objects with partial occlusions, viewpoint changes, varying illumination, cluttered backgrounds. Recent work in object recognition uses machine learning techniques SVM-KNN, Local Ensemble Kernel Learning, Multiple Kernel Learning. In this paper, we want to utilize SVM as week learners in AdaBoost. Experiments are done with classifiers like neare...

متن کامل

Controlled Sparsity Kernel Learning

Multiple Kernel Learning(MKL) on Support Vector Machines(SVMs) has been a popular front of research in recent times due to its success in application problems like Object Categorization. This success is due to the fact that MKL has the ability to choose from a variety of feature kernels to identify the optimal kernel combination. But the initial formulation of MKL was only able to select the be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer and Information Science

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011